If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=32
We move all terms to the left:
n^2+n-(32)=0
a = 1; b = 1; c = -32;
Δ = b2-4ac
Δ = 12-4·1·(-32)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{129}}{2*1}=\frac{-1-\sqrt{129}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{129}}{2*1}=\frac{-1+\sqrt{129}}{2} $
| 15=v-2 | | n-38=12 | | 5•15^-4h=15 | | t/0.25=102 | | 38=b+16 | | 19+9x=2(3-6x) | | f+52=97 | | m2=62m3 | | j+42=49 | | 19+9x=2(3x-2) | | 2x2+5x=11 | | 95=k+10 | | 19+9x=2(3x-6) | | 2t=8=t | | 2x-90=x-5 | | w/12=108 | | d+2=98 | | 8+2(2x-3)=6-(x-4) | | 6=12(2x-3) | | X-15=12=x | | 2(x-4)+3=5 | | 19+9x=6x-38 | | X/3—3=x/9+3 | | 10x-27=2x | | 5+b/8=8 | | 40=(3x10) | | -2=1/2x-10 | | 11x+20=4x^2+20x+25 | | 3x+9=1/2 | | 3(4x-6-2x+1=3-(3x-6) | | 11x+20=4x^2 | | y/12+5=10 |